Quantifying the underlying landscape and paths of cancer.

نویسندگان

  • Chunhe Li
  • Jin Wang
چکیده

Cancer is a disease regulated by the underlying gene networks. The emergence of normal and cancer states as well as the transformation between them can be thought of as a result of the gene network interactions and associated changes. We developed a global potential landscape and path framework to quantify cancer and associated processes. We constructed a cancer gene regulatory network based on the experimental evidences and uncovered the underlying landscape. The resulting tristable landscape characterizes important biological states: normal, cancer and apoptosis. The landscape topography in terms of barrier heights between stable state attractors quantifies the global stability of the cancer network system. We propose two mechanisms of cancerization: one is by the changes of landscape topography through the changes in regulation strengths of the gene networks. The other is by the fluctuations that help the system to go over the critical barrier at fixed landscape topography. The kinetic paths from least action principle quantify the transition processes among normal state, cancer state and apoptosis state. The kinetic rates provide the quantification of transition speeds among normal, cancer and apoptosis attractors. By the global sensitivity analysis of the gene network parameters on the landscape topography, we uncovered some key gene regulations determining the transitions between cancer and normal states. This can be used to guide the design of new anti-cancer tactics, through cocktail strategy of targeting multiple key regulation links simultaneously, for preventing cancer occurrence or transforming the early cancer state back to normal state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying the Landscape for Development and Cancer from a Core Cancer Stem Cell Circuit.

Cancer presents a serious threat to human health. The understanding of the cell fate determination during development and tumor-genesis remains challenging in current cancer biology. It was suggested that cancer stem cell (CSC) may arise from normal stem cells or be transformed from normal differentiated cells. This gives hints on the connection between cancer and development. However, the mole...

متن کامل

Quantifying the Waddington landscape and biological paths for development and differentiation.

We developed a theoretical framework to prove the existence and quantify the Waddington landscape as well as chreode-biological paths for development and differentiation. The cells can have states with the higher probability ones giving the different cell types. Different cell types correspond to different basins of attractions of the probability landscape. We study how the cells develop from u...

متن کامل

Quantifying Cell Fate Decisions for Differentiation and Reprogramming of a Human Stem Cell Network: Landscape and Biological Paths

Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell states, quantified and exhibited the high...

متن کامل

Landscape assessment of high-rise buildings: A method based on 3DGIS, BIM and AHP

In this paper, we propose a quantitative indicator for measuring and ranking real estate from the perspective of the surrounding landscape by integrating the building information model (BIM) and the three-dimensional geospatial information system (3DGIS) based on the AHP method. The landscape is one of the qualitative variables which it's measuring and quantifying is a complex task. In previous...

متن کامل

Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation.

Cellular differentiation, reprogramming and transdifferentiation are determined by underlying gene regulatory networks. Non-adiabatic regulation via slow binding/unbinding to the gene can be important in these cell fate decision-making processes. Based on a stem cell core gene network, we uncovered the stem cell developmental landscape. As the binding/unbinding speed decreases, the landscape to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 11 100  شماره 

صفحات  -

تاریخ انتشار 2014